Bounded influence magnetotelluric response function estimation
نویسندگان
چکیده
منابع مشابه
Bounded influence magnetotelluric response function estimation
S U M M A R Y Robust magnetotelluric response function estimators are now in standard use in electromagnetic induction research. Properly devised and applied, these have the ability to reduce the influence of unusual data (outliers) in the response (electric field) variables, but are often not sensitive to exceptional predictor (magnetic field) data, which are termed leverage points. A bounded ...
متن کاملA Comparison of Techniques for Magnetotelluric Response Function Estimation
Spectral analysis of the time-varying horizontal magnetic and electric field components yields the magnetotelluric (MT) impedance tensor. This frequency dependent 2x2 complex tensor can be examined for details which axe diagnostic of the electrical conductivity distribution in the Eaxth within the relevant (frequency dependent) inductive scale length of the surface observation point. As such, p...
متن کاملEstimation of Scale Parameter Under a Bounded Loss Function
The quadratic loss function has been used by decision-theoretic statisticians and economists for many years. In this paper the estimation of scale parameter under a bounded loss function, which is adequate for assessing quality and quality improvement, is considered with restriction to the principles of invariance and risk unbiasedness. An implicit form of minimum risk scale equivariant ...
متن کاملEstimation of Lower Bounded Scale Parameter of Rescaled F-distribution under Entropy Loss Function
We consider the problem of estimating the scale parameter &beta of a rescaled F-distribution when &beta has a lower bounded constraint of the form &beta&gea, under the entropy loss function. An admissible minimax estimator of the scale parameter &beta, which is the pointwise limit of a sequence of Bayes estimators, is given. Also in the class of truncated linear estimators, the admissible estim...
متن کاملBounded-Influence Robust Estimation in Generalized Linear Latent Variable Models
Latent variable models are used for analyzing multivariate data. Recently, generalized linear latent variable models for categorical, metric, and mixed-type responses estimated via maximum likelihood (ML) have been proposed. Model deviations, such as data contamination, are shown analytically, using the influence function and through a simulation study, to seriously affect ML estimation. This a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geophysical Journal International
سال: 2004
ISSN: 0956-540X,1365-246X
DOI: 10.1111/j.1365-246x.2004.02203.x